post
Ученые Южно-Уральского государственного университета научили искусственный интеллект распознавать подозрительные банковские транзакции с помощью градиентного бустинга. Алгоритм можно использовать как в повседневной работе службы безопасности банков, так и при контроле за «цифровой валютой». Результат испытаний на общедоступной базе транзакций Elliptic показал высокий уровень безошибочности – 99.21% верных попаданий. Это впервые удовлетворяет требованиям банковской сферы к таким алгоритмам. Конкурирующие группы добивались безошибочности 97.8%, что считалось недостаточным. Транзакция – действие банка с деньгами, перевод их с одного счета на другой и так далее. Для компьютера транзакция – это строка данных, в которой отображается история движения денежных средств. Задача ИИ – научиться выявлять подозрительные транзакции. Компьютеру достаточно создать математический критерий. Для обучения используются уже наработанные базы транзакций, где подозрительные строки помечены заранее. В реальной деятельности банка подозрительные транзакции составляют очень небольшую долю. Старший научный сотрудник ЮУрГУ, кандидат физико-математических наук Алексей Ручай с коллегами использовал для обучения и тестирования своей системы базу Elliptic, в которой подобраны транзакции биткоина. Главный критерий работы искусственного интеллекта – безошибочность ответов. 100%-ной безошибочности не может быть в принципе. Результат, полученный алгоритмом ученых ЮУрГУ XGBClassifier, – 0.9921 верных ответов по базе Elliptic, тогда как предыдущий опубликованный результат составлял лишь 0.9780. Разница между двумя этими числами принципиальна: прежнее не удовлетворяло требованиям к надежности выявления аномальных транзакций, теперь условия выполнены. Результаты работы опубликованы в журнале «Communications in Computer and Information Science», а также в серии «Безопасность в цифровой среде» Вестника УрФО и Челябинском физико-математическом журнале.